

Adjustable restrictor

Linkage

Mechanical self-powered dampers

For heavy-duty applications

Non-return dampers prevent unwanted airflows against the intended airflow direction when the system is not in operation

- Air leakage with back pressure to EN 1751, class 4
- Maximum differential pressure: 5000 Pa
- Blades made of aluminium, casing made of galvanised steel
- Available in standard sizes and many intermediate sizes
- Variant ARK (with linked blades) for variable volume flows
- Variant ARK-1 (with adjustable blade restrictors) for constant volume flows
- Installation in horizontal or vertical ducts

Optional equipment and accessories

- Installation subframe
- Powder coating (RAL or DB)
- Stainless steel construction with stainless steel casing; blades made of aluminium
- Temperature resistant up to 200 °C with Viton seal

Product data sheet

Λ.		1/
Δ	ĸ	к

General information	2	Order code	8
Function	3	Variants	9
Technical data	5	Dimensions	12
Quick sizing	6	Product details	16
Specification text	7	Nomenclature	18

General information

Application

- Non-return dampers for the fresh air and exhaust air ducts of ventilation and air conditioning systems
- Prevention of unwanted airflows against the intended airflow direction when the system is not in operation
- Blades close automatically when the system is shut down
- Maximum differential pressure: 5000 Pa

Special features

- Robust, maintenance-free construction
- Maximum differential pressure: 5000 Pa
- Closed blade air leakage with back pressure, in closing direction, to EN 1751, class 4
- Damper for negative or positive pressure (air extract or discharge)
- Operating temperature 0 to 80 °C
- Optional temperature resistant construction for up to 200 °C, with Viton seal
- Installation in horizontal or vertical ducts
- Maintenance-free DU bearings with Teflon coating, bearing shafts made of stainless steel

Nominal sizes

- B: 200, 400, 600, 800, 1000, 1200 mm (intermediate sizes: 201 – 1199 mm, in increments of 1 mm)
- H: 345, 675, 1005, 1335, 1665, 1995 mm (intermediate sizes 355 505, 685 835, 1015 1165, 1345 1495, 1675 1825 mm in increments of 1 mm)
- Any combination of B × H

Variants

- ARK: Non-return damper with linked blades, preferably for variable volume flows
- ARK-1: Non-return damper with adjustable blade restrictors, preferably for constant volume flows

Construction

- Galvanised sheet steel, duct connection without flange holes
- A2: Stainless steel
- G: Duct connection with flange holes

Accessories

 Installation subframe for the fast and simple installation of mechanical self-powered dampers

Standards and guidelines

- Closed blade air leakage (against the intended airflow direction) to EN 1751, class 4
- Casing air leakage to EN 1751, class C

Maintenance

- Maintenance-free as construction and materials are not subject to wear
- Contamination should be removed as it may lead to corrosion and to increased closed blade air leakage

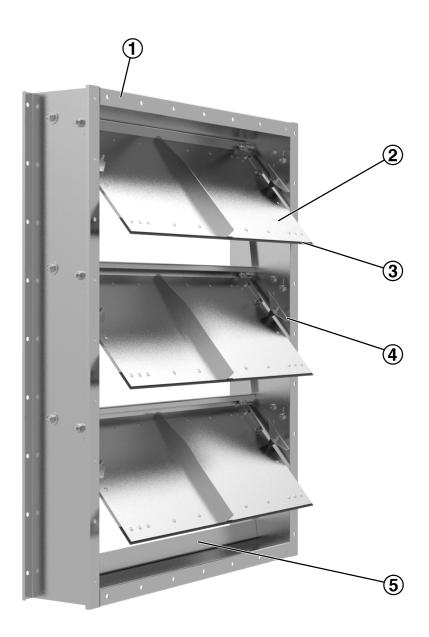
2 / 18 PD-02/2022 - DE/en

Function

Non-return dampers open and close automatically. When the system is in operation, the blades open when air flows. The blade opening angle depends on the differential pressure and the flowing against the intended airflow direction. volume flow rate; for variant ARK-1 the opening angle is limited

by adjustable blade restrictors. When the system is shut down, the blades close due to their weight. They safely prevent air from

Schematic illustration of ARK



- ① Casing
- ② Blade
- 3 Seal
- 4 Linkage
- ⑤ Travel stop (angle section)

Schematic illustration of ARK-1

- Casing
 Blade
- 3 Seal
- Adjustable blade restrictor
- ⑤ Travel stop (angle section)

Technical data

Nominal sizes	200 × 345 – 1200 × 1995 mm
Volume flow rate range	690 – 23,950 l/s or 2484 – 86,220 m³/h at 10 m/s
Total differential pressure (horizontal airflow)	115 Pa at 10 m/s
Total differential pressure (vertical airflow)	45 Pa at 10 m/s
Maximum permissible differential pressure in closing direction	5000 Pa
Operating temperature	0 to 80 °C

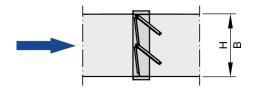
ARK, free cross-sectional area [m²]

ш			E	В			
П	200	400	600	800	1000	1200	
345	0.043	0.097	0.152	0.206	0.26	0.314	
675	0.088	0.198	0.309	0.419	0.529	0.639	
1005	0.133	0.299	0.466	0.632	0.798	0.964	
1335	0.178	0.4	0.622	0.845	1.067	1.289	
1665	0.223	0.501	0.779	1.058	1.336	1.614	
1995	0.268	0.602	0.936	1.271	1.605	1.94	

Intermediate sizes: Interpolate values between widths.

Quick sizing

Quick sizing tables provide a good overview of the volume flow rates with an airflow velocity of 10 m/s. Values for intermediate widths can be interpolated.


ARK, maximum volume flow rate

		В										
Н	20	00	4(00	60	00	80	00	10	00	12	00
	l/s	m³/h	l/s	m³/h	l/s	m³/h	l/s	m³/h	l/s	m³/h	l/s	m³/h
345	690	2484	1380	4968	2070	7452	2760	9936	3450	12420	4140	14904
675	1350	4860	2700	9720	4050	14580	5400	19440	6760	24336	8100	29160
1005	2010	7236	4020	14472	6040	21744	8040	28944	10050	36180	12050	43380
1335	2670	9612	5340	19224	8020	28872	10700	38520	13350	48060	16000	57600
1665	3330	11988	6660	23976	10000	36000	13300	47880	16650	59940	20000	72000
1995	3990	14364	7980	28728	11950	43020	15950	57420	19950	71820	23950	86220

Differential pressure Δp_{st} [Pa]

[ma/a]	Airflow				
v [m/s]	horizontal	vertical			
2	50	135			
4	75	125			
6	95	105			
8	110	65			
10	115	45			

Horizontal airflow

Vertical airflow

Specification text

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design program.

Specification text

Rectangular non-return dampers to prevent air from flowing against the intended airflow direction through fresh air and exhaust air ducts of air conditioning systems.

Ready-to-install component which consists of a casing, blades with low-friction bearings, and travel stop and sealing parts.

Special features

- Robust, maintenance-free construction
- Maximum differential pressure: 5000 Pa
- Closed blade air leakage with back pressure, in closing direction, to EN 1751, class 4
- Damper for negative or positive pressure (air extract or discharge)
- Operating temperature 0 to 80 °C
- Optional temperature resistant construction for up to 200 °C, with Viton seal
- Installation in horizontal or vertical ducts
- Maintenance-free DU bearings with Teflon coating, bearing shafts made of stainless steel

Construction

- Galvanised sheet steel, duct connection without flange holes
- A2: Stainless steel
- · G: Duct connection with flange holes

Technical data

- Nominal sizes: 200 × 345 to 1200 × 1995 mm
- Volume flow rate range: 690 23,950 l/s or 2484 86,220 m³/h at 10 m/s
- Total differential pressure (horizontal airflow): 115 Pa at 10 m/s
- Total differential pressure (vertical airflow): 45 Pa at 10 m/s
- Maximum differential pressure in closing direction: 5000 Pa
- Operating temperature: 0 to 80 °C
- Maximum pressure: 5000 Pa

Sizing data

- q_v [m³/h]
- Δp_{st} [Pa]

Air-regenerated noise

L_{WA} [dB(A)]

Order code

1 Type

ARK Non-return damper

2 Blade mechanism

No entry required: linked blades 1 Blades with adjustable restrictors

3 Material

Material

No entry required: galvanised steel, with aluminium blades

A2 Stainless steel with aluminium blades

4 Construction

No entry required: duct connection without flange holes

G Duct connection with flange holes

Order example: ARK-1-A2/1000×1995/P1-RAL 7001 Blade mechanism

Construction Without holes Nominal size

Installation subframe

User interface

5 Nominal size [mm]

 $B \times H$

6 Installation subframe

No entry required: None

ER With (only for construction G)

7 Surface

No entry required: standard construction

P1 powder-coated, specify RAL CLASSIC colour

Gloss level RAL 9010 50 % RAL 9006 30 %

All other RAL colours 70 %

Blades with adjustable restrictors Stainless steel with aluminium blades 1000 × 1995 mm Without Powder-coated, RAL 7001, silver

Variants

Non-return damper, variant ARK

Non-return damper with linkage

ARK

Variant

Non-return damper with linked blades, preferably for variable volume flows

Nominal sizes

- B: 200, 400, 600, 800, 1000, 1200 mm (intermediate sizes: 201 1199 mm, in increments of 1 mm)
- H: 345, 675, 1005, 1335, 1665, 1995 mm (intermediate sizes 355 505, 685 835, 1015 1165, 1345 1495, 1675 1825 mm in increments of 1 mm)
- Any combination of B × H

Parts and characteristics

- Ready-to-install non-return damper
- Blades with low-friction bearings
- Seal
- Travel stop (angle section)
- Linkage

Construction features

- Rectangular casing, material thickness 2 mm
- · Blades, material thickness 3 mm
- Flanges on both sides, suitable for duct connection, with or without flange holes
- Linkage for synchronous blade movement
- Blades with perimeter seal, pressed against travel stop (angle section) when closed
- Blade shafts with maintenance-free plastic bearings

Materials and surfaces

- Casing and travel stop (angle section) made of galvanised sheet steel, material no. EN 10346-DX51D+Z140-200
- A2 construction: Casing and travel stop (angle section) made of stainless steel, material no. 1.4301
- Blades and linkage made of aluminium, material no. AlMg3
- Blade holders made of stainless steel, material no. 1.4301
- Blade shafts made of stainless steel, material no. 1.4104
- Plastic bearing made of PPS

- Neoprene seals
- P1: Powder-coated, RAL CLASSIC colour
- PS: Powder-coated, DB colour

Non-return damper, variant ARK-1

Non-return damper with adjustable blade restrictor

ARK-1

Variant

Non-return damper with adjustable blade restrictors, preferably for constant volume flows

Nominal sizes

- B: 200, 400, 600, 800, 1000, 1200 mm (intermediate sizes: 201 1199 mm, in increments of 1 mm)
- H: 345, 675, 1005, 1335, 1665, 1995 mm (intermediate sizes 355 505, 685 835, 1015 1165, 1345 1495, 1675 1825 mm in increments of 1 mm)
- Any combination of B × H

Parts and characteristics

- Ready-to-install non-return damper
- Blades with low-friction bearings
- Seal
- Travel stop (angle section)
- Two adjustable restrictors per blade

Construction features

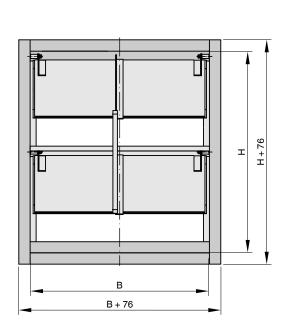
- Rectangular casing, material thickness 2 mm
- Blades, material thickness 3 mm
- Flanges on both sides, suitable for duct connection, with or without flange holes
- Restrictors, adjustable from the outside, to limit the opening angle for each blade
- Blades can be moved independently of one another
- Blades with perimeter seal, pressed against travel stop (angle section) when closed
- Blade shafts with maintenance-free plastic bearings

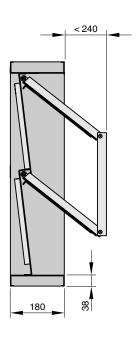
Materials and surfaces

- Casing and travel stop (angle section) made of galvanised sheet steel, material no. EN 10346-DX51D+Z140-200
- A2 construction: Casing and travel stop (angle section) made of stainless steel, material no. 1.4301

- Blades made of aluminium, material no. AIMg3
- Blade holders and restrictors made of stainless steel, material no. 1.4301
- Blade shafts made of stainless steel, material no. 1.4104
- Plastic bearing made of PPS
- Neoprene seals
- P1: Powder-coated, RAL CLASSIC colour
- PS: Powder-coated, DB colour

Dimensions

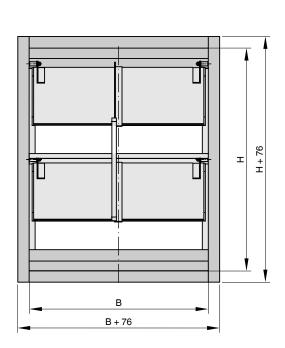

- B: 200 1200 mm, intermediate sizes 201 1199 in increments of 1 mm
- H: 345 1995 mm, intermediate sizes 355 505, 685 835, 1015 1165, 1345 1495, 1675 – 1825 mm in increments of 1 mm
- The weight for the next larger size applies

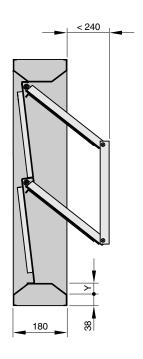

Flow cross section to calculate the airflow velocity

A = B × H

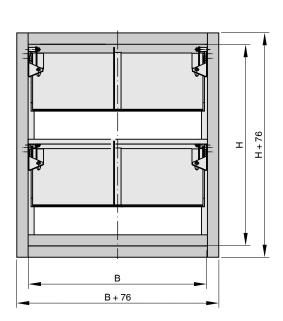
Unit of measure for B and H: m

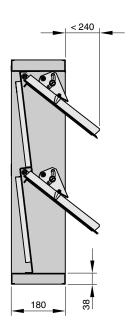
ARK, standard sizes


ARK: Standard sizes, dimensions

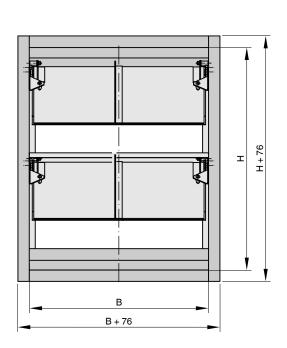

Н	No. of blades	No. of coupling rods
345	1	
675	2	1
1005	3	1
1335	4	2
1665	5	2
1995	6	2

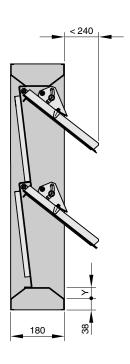
ARK, intermediate sizes


ARK: Intermediate sizes, dimensions


Н	No. of blades	No. of coupling rods	Y
355 – 505	1	0	5 – 80
685 – 835	2	1	5 – 80
1015 – 1165	3	1	5 – 80
1345 – 1495	4	2	5 – 80
1675 – 1825	5	2	5 – 80

ARK-1, standard sizes


ARK-1: Standard sizes, dimensions

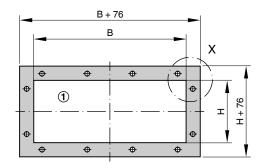

and it ottained to the control of th				
Н	No. of blades			
345	1			
675	2			
1005	3			
1335	4			
1665	5			
1995	6			

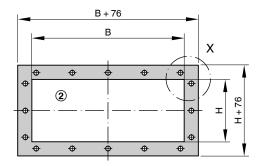
ARK-1, intermediate sizes

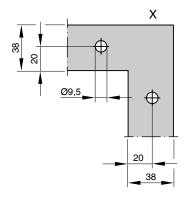
ARK-1: Intermediate sizes, dimensions

Н	No. of blades	Υ
355 – 505	1	5 – 80
685 – 835	2	5 – 80
1015 – 1165	3	5 – 80
1345 – 1495	4	5 – 80
1675 – 1825	5	5 – 80

ARK, ARK-1, weights [kg]


- 11	В					
Н	200	400	600	800	1000	1200
345	8	10	12	15	18	21
675	12	16	19	23	27	32
1005	17	22	26	31	36	41
1335	22	28	33	39	45	51
1665	27	34	40	47	54	61
1995	32	40	47	55	63	71





Product details

Flange holes, ARK

- ① Even number of holes (hole pitch = 250 mm)
- ② Uneven number of holes (hole pitch = 250 mm)

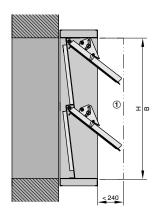
ARK, ARK-1, ARK2: width, no. of flange holes

Article Article Wildlig No. of Hange Holos				
Н	Number of holes n			
200 – 287	1			
288 – 537	2			
538 – 787	3			
788 – 1037	4			
1038 – 1200	5			

ARK, ARK-1, ARK2: height, no. of flange holes

Н	Number of holes n
345 – 461	2
462 – 711	3
712 – 961	4
962 – 1211	5
1212 – 1461	6
1462 – 1711	7
1712 – 1961	8
1962 – 1995	9

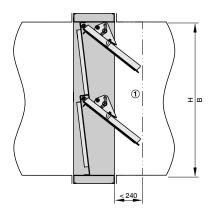
Installation and commissioning


ARK

- Installation orientation: Horizontal airflow, any airflow direction; or vertical airflow with airflow from bottom to top
- Only for installation in internal spaces

ARK-1

- Installation orientation: Horizontal airflow, any airflow direction; or vertical airflow with airflow from bottom to top
- Only for installation in internal spaces
- Adjusting the restrictors to limit the opening angle for each blade


Installation into an internal wall, without installation subframe

① Blade movement area must be kept clear

Illustration shows ARK-1

Duct installation

① Blade movement area must be kept clear

Illustration shows ARK-1

Nomenclature

Definitions

 L_{wA} [dB(A)]

Sound power level of air-regenerated noise for the mechanical self-powered damper, A-rated

 $A [m^2]$

Upstream cross section

v [m/s]

Airflow velocity based on the upstream cross section

q_v [m³/h]; [l/s]
Volume flow rate

 Δp_{st} [Pa]

Static differential pressure

 Δp_t [Pa]

Total differential pressure

Principal dimensions

B [mm]

Duct width

H [mm]

Duct height

n[]

Number of flange screw holes

m [kg]

Weight

Lengths

All lengths are given in millimetres [mm] unless stated otherwise

